Invariant Sets for Constrained Nonlinear Discrete-time Systems with Application to Feasibility in Model Predictive Control
نویسندگان
چکیده
An understanding of invariant set theory is essential in the design of controllers for constrained systems, since state and control constraints can be satisfied if and only if the initial state belongs to a positively invariant set for the closed-loop system. The paper briefly reviews some concepts in invariant set theory and shows that the various sets can be computed using a single recursive algorithm. The ideas presented in the first part of the paper are applied to the fundamental design goal of guaranteeing feasibility in predictive control. New necessary and sufficient conditions based on the control horizon, prediction horizon and terminal constraint set are given in order to guarantee that the predictive control problem will be feasible for all time, given any feasible initial state.
منابع مشابه
Robust Model Predictive Control for a Class of Discrete Nonlinear systems
This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...
متن کاملReceding-horizon control of constrained uncertain linear systems with disturbances
The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs b...
متن کاملRedecing-horizon Control of Constrained Uncertain Linear Systems with Disturbances
The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs b...
متن کاملThe Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملConstrained Controller Design for Real-time Delay Recovery in Metro Systems
This study is concerned with the real-time delay recovery problem in metro loop lines. Metro is the backbone of public transportation system in large cities. A discrete event model for traffic system of metro loop lines is derived and presented. Two effective automatic controllers, linear quadratic regulator (LQR) and model predictive controller (MPC), are used to recover train delays. A newly-...
متن کامل